đẳng thức đáng nhớ

Những hằng đẳng thức đáng nhớ dĩ nhiên thân thuộc gì với chúng ta . Hôm ni Kiến tiếp tục rằng kỹ rộng lớn về 7 hằng đẳng thức cần thiết : bình phương của một tổng, bình phương của một hiệu, hiệu của nhì bình phương, lập phương của một tổng, lập phương của một hiệu, tổng nhì lập phương và sau cuối là hiệu nhì lập phương. Các các bạn nằm trong tìm hiểu thêm nhé.

Bạn đang xem: đẳng thức đáng nhớ

1. Bình phương của một tổng

Với A, B là những biểu thức tùy ý, tớ có: ( A + B )2 = A2 + 2AB + B2.

Ví dụ:

a) Tính ( a + 3 )2.
b) Viết biểu thức x2+ 4x + 4 bên dưới dạng bình phương của một tổng.

Hướng dẫn:

a) Ta có: ( a + 3 )2= a2+ 2.a.3 + 32 = a2 + 6a + 9.
b) Ta sở hữu x2+ 4x + 4 = x2+ 2.x.2 + 22 = ( x + 2 )2.

2. Bình phương của một hiệu

Với A, B là những biểu thức tùy ý, tớ có: ( A - B )2 = A2 - 2AB + B2.

hang-dang-thuc-dang-nho-01

3. Hiệu nhì bình phương

Với A, B là những biểu thức tùy ý, tớ có:  A2 - B2 = ( A - B )( A + B ).

hang-dang-thuc-dang-nho-02

4. Lập phương của một tổng

Với A, B là những biểu thức tùy ý, tớ có: ( A + B )3 = A3 + 3A2B + 3AB2 + B3.

hang-dang-thuc-dang-nho-03

5. Lập phương của một hiệu.

Với A, B là những biểu thức tùy ý, tớ có: ( A - B )3 = A3 - 3A2B + 3AB2 - B3.

Ví dụ :

a) Tính ( 2x - 1 )3.
b) Viết biểu thức x3- 3x2y + 3xy2- y3 dưới dạng lập phương của một hiệu.

Hướng dẫn:

a) Ta có: ( 2x - 1 )3 

= ( 2x )3 - 3.( 2x )2.1 + 3( 2x ).12 - 13

 = 8x3 - 12x2 + 6x - 1

b) Ta sở hữu : x3- 3x2y + 3xy2- y3 

= ( x )3 - 3.x2.nó + 3.x. y2 - y3 

= ( x - nó )3

6. Tổng nhì lập phương

Với A, B là những biểu thức tùy ý, tớ có: A3 + B3 = ( A + B )( A2 - AB + B2 ).

Chú ý: Ta quy ước A2 - AB + B2 là bình phương thiếu hụt của hiệu A - B.

Ví dụ:

a) Tính 33+ 43.
b) Viết biểu thức ( x + 1 )( x2- x + 1 ) bên dưới dạng tổng nhì lập phương.

Hướng dẫn:

a) Ta có: 33+ 43= ( 3 + 4 )( 32 - 3.4 + 42 ) = 7.13 = 91.
b) Ta có: ( x + 1 )( x2- x + 1 ) = x3+ 13 = x3 + 1.

Xem thêm: những việc nào sau đây em không nên thực hiện khi giao tiếp qua mạng

7. Hiệu nhì lập phương

Với A, B là những biểu thức tùy ý, tớ có: A3 - B3 = ( A - B )( A2 + AB + B2 ).

Chú ý: Ta quy ước A2 + AB + B2 là bình phương thiếu hụt của tổng A + B.

Ví dụ:

a) Tính 63- 43.
b) Viết biểu thức ( x - 2y )( x2+ 2xy + 4y2) bên dưới dạng hiệu nhì lập phương

Hướng dẫn:

a) Ta có: 63- 43= ( 6 - 4 )( 62 + 6.4 + 42 ) = 2.76 = 152.
b) Ta sở hữu : ( x - 2y )( x2+ 2xy + 4y2) = ( x )3 - ( 2y )3 = x3 - 8y3.

B. Bài luyện tự động luyện về hằng đẳng thức

 Bài 1.Tìm x biết

a) ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.
b) ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2 = - 10.

Hướng dẫn:

a) sát dụng những hằng đẳng thức ( a - b )( a2+ ab + b2) = a3 - b3.

( a - b )( a + b ) = a2 - b2.

Khi cơ tớ sở hữu ( x - 3 )( x2 + 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.

⇔ x3 - 33 + x( 22 - x2 ) = 0 ⇔ x3 - 27 + x( 4 - x2 ) = 0

⇔ x3 - x3 + 4x - 27 = 0

⇔ 4x - 27 = 0 

Vậy x= .

b) sát dụng hằng đẳng thức ( a - b )3= a3- 3a2b + 3ab2 - b3

( a + b )3 = a3 + 3a2b + 3ab2 + b3

( a - b )2 = a2 - 2ab + b2

Khi cơ tớ có: ( x + 1 )3 - ( x - 1 )3 - 6( x - 1 )2 = - 10.

⇔ ( x3 + 3x2 + 3x + 1 ) - ( x3 - 3x2 + 3x - 1 ) - 6( x2 - 2x + 1 ) = - 10

⇔ 6x2 + 2 - 6x2 + 12x - 6 = - 10

⇔ 12x = - 6 

Vậy x=

Bài 2: Rút gọn gàng biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2

  1. 2x2+ 4xy     B. – 8y2+ 4xy
  2. - 8y2 D. – 6y2+ 2xy

Hướng dẫn

Ta có: A = (x + 2y ). (x - 2y) - (x – 2y)2

A = x2 – (2y)2 – [x2 – 2.x.2y +(2y)2 ]

A = x2 – 4y2 – x2 + 4xy - 4y22

Xem thêm: lấy dằm ra khỏi tay

A = -8y2 + 4xy

  • Hãy ghi nhớ nó nhé

hang-dang-thuc-dang-nho-04

Những hằng đẳng thức đáng nhớ bên trên cực kỳ cần thiết tủ kỹ năng và kiến thức của tất cả chúng ta . Thế nên chúng ta hãy phân tích và ghi ghi nhớ nó nhé. Những đẳng thức cơ canh ty tất cả chúng ta xử lý những câu hỏi dễ dàng và khó khăn một cơ hội đơn giản, chúng ta nên thực hiện đi làm việc lại nhằm phiên bản thân thích hoàn toàn có thể áp dụng chất lượng rộng lớn. Chúc chúng ta thành công xuất sắc và cần mẫn bên trên tuyến phố học hành. Hẹn chúng ta ở những bài bác tiếp theo